
IJARCCE
ISSN (Online) 2278-1021

ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 5, Issue 3, March 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.53158 643

A Quality Based Novel Subclass Coupling Factor

Metric for Evaluating Software

Dr. S.A. Sahaya Arul Mary
1
, M.Kavitha

2

Dean Academics, Jayaram College of Engineering & Technology, Trichy1

Research Scholar, Dept. of Computer Science, Manonmaniam Sundaranar University, Tirunelveli2

Abstract: Software metrics are developed for the purpose of evaluating the software in all stages of the development

process to ensure the inhabitant of quality in all phases. Though the evolution of software programming has been

developing over the years, the categorization of software metrics are centered only on procedure oriented software

programming and object oriented software programming. In object oriented modular programming, coupling refers to a

justifying factor for measuring the quality of program code. As for the code concern, a module with low coupling and

high cohesion is an ideal objective of the programmers. The analysis over the classification of types of coupling in

object oriented programming is still diminutive and has been an active research in software metrics. The objective of

this paper is to propose a coupling metric that could possibly identify the subclass coupling one of the types of
coupling, that exist in the software modules there by highlighting the modules that can be focused for further

improvement.

Keywords: software metrics, cohesion, coupling, coupling factor, weyuker’s properties.

I. INTRODUCTION

Software metrics in software engineering is the process of

measuring the quality of software. Software metrics are

usually incorporated with testing phase of software

development life cycle. Software testing not only verifies

the requirements, design, and functionalities of code but

also to ensure the qualitative writing of program. The

verification of quality of code depends on how well the

modularization of the software program is constructed.

The two important factors that can assess the effective
modularization of the program code are coupling and

cohesion. Coupling is the measure of the degree of

relationship between modules. The measurement of

coupling over the structured development context was first

defined by Stevens et al. during the year 1974 [1].

Coupling measures the interdependencies between one or

more objects. For example, objects A and B are said to be

coupled if a method of object B accesses or calls a method

or variable in object A. A classic design of the object-

oriented programming necessitates the modules to be

designed with low coupling [11]. As low coupling has a
direct impact with the quality of good program code, it

may be obligatory for the software to be assessed with the

identification of types of coupling in object oriented

programming. The types of coupling called, subclass

coupling and temporal coupling [12] are the two streams

of object oriented coupling where the prior describes the

relationship between a parent and its children and the

posterior bundles two actions into one module as they just

happen to occur at the same time.

The primary goal of this paper is to propose novel

software metric that identifies the complexity of the
program code by computing the ratio of subclass coupling

in modules. The higher value of the metric designates the

higher the complexity of the modularization.

The remaining section of the paper is organized as

follows: section 2 contains the review of literature; section

3 comprises the methodology of the proposed work,

section 4 encompasses the illustration and finally section 5

comprehends the conclusion.

II. REVIEW OF LITERATURE

Yadav et al.[1] applied Cohesion and Coupling metrics on

programs of inheritance and interface and evaluated the

traditional software metrics values. The cohesion and

Coupling metrics identified the complexity between

inheritance and interface programming. The authors

wanted to show the concepts that was good to use and

beneficial for software developer. The authors also

focused on an empirical evaluation of object oriented

metrics in C#. The resulting values were analyzed to

provide significant insight about the object oriented

characteristics of reusability programs.

Aloysius et al. [2] presented a cognitive complexity metric

namely cognitive weighted coupling between objects for
measuring the types of coupling involved in object-

oriented systems. The authors concentrated on five types

of coupling that may exist between classes such as control

coupling, global data coupling, internal data coupling, data

coupling and lexical content coupling were considered in

computing their proposed CWCBO. CWCBO had proven

that, complexity of the class was getting affected based on

the cognitive weights of the various types of coupling.

 Poshyvanyk et al.[3] introduced set of coupling measures

for OO systems – named conceptual coupling, based on

the semantic information obtained from the source code,

encoded in identifiers and comments. The authors have

conducted a case study on open source software systems to
compare the new measures with existing structural

IJARCCE
ISSN (Online) 2278-1021

ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 5, Issue 3, March 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.53158 644

coupling measures. The authors proved that their case

study was able to capture the conceptual coupling in new

dimensions of coupling, which were not captured by

existing coupling measures.

Misra et al.[4] proposed a metric that was based on the
important feature of the OO systems: Inheritance. The

metric calculates the complexity at method level

considering internal structure of methods, and also

considers inheritance to calculate the complexity of class

hierarchies. The proposed metric was validated both

theoretically and empirically. For theoretical validation,

principles of measurement theory are applied since the

measurement theory had been proposed and extensively

used in the literature as a means to evaluate the software

engineering metrics. The authors applied their metric on a

real project for empirical validation and compared it with

Chidamber and Kemerer (CK) metrics suite [5]. The
theoretical, practical and empirical validations and the

comparative study proved the robustness of the measure.

Aggarwal et al.[6] addressed the need for software metrics

and introduced a new set of design metrics for object-

oriented code. The authors developed two OO metrics for

measuring the amount of robustness included in the code.

The metrics were analytically evaluated against

Weyuker’s proposed set of nine axioms. These set of

metrics were calculated and analyzed for standard projects

and accordingly ways in which project managers could

utilize these metrics were suggested by the authors.

III. BACKGROUND

A. Coupling Factor (CF)

The metric Coupling Factor (CF) was proposed by MOOD

for assessing the ratio of coupling involved between

classes [10]. The ratio of coupling is evaluated using a

fraction, where the numerator represents the total number

of non-inheritance couplings in the module and the

denominator signifies the maximum number of coupling
that is possible for the corresponding module. The

maximum number of couplings includes both inheritance

and non-inheritance related coupling.

𝐶𝐹 =
 𝑖𝑠_𝑐𝑙𝑖𝑒𝑛𝑡(𝐶𝑖 ,𝐶𝑗)𝑛

𝑗=1 𝑛
𝑖=1

(𝑛2 − 𝑛)

where n is the total number of classes in the module. The

value of is_client (Ci, Cj) is 1 if the class Cj calls a method

or attribute of Ci or otherwise 0.

B. Motivation

The empirical study of various researches suggests

creating modules with stronger coupling is more difficult

to understand, to locate the origin of errors and to perform
addition and modification of programs in the existing

modules. Moreover, excessive coupling between objects is

disadvantageous to modular design as more testing is

required to achieve reliable results. Hence, to conclude, a

module with low coupling is desirable. Though CF metric

explicates the coupling between non-inheritance classes,

and only exhibits the occurrence of direct coupling

between the classes. Indirect coupling also plays a vital

role in assessing the complexity of any module. A

coupling metric should be capable of handling both direct

and indirect coupling [8], hence the motivation of the

proposed work is to modify the existing CF metric so as to
evaluate both direct and indirect coupling in the module.

IV. METHODOLOGY

A. Subclass Coupling Factor

The proposed Subclass Coupling Factor metric (SCF)

measures the direct and indirect subclasses of the
individual class so as to calibrate the complexity of the

whole module. SCF metric adopts the concepts of CF

metric as its base and performs the union operation with

the intersected sets as the results. Hence, the complexity of

the whole module can be weighed to assess the quality of

software modules.

𝐶𝐿 = 𝐶𝑖=1
𝑛 [𝐶𝑗=1

𝑛 𝐶𝑖(𝐶𝑗)(𝑖𝑠_𝑠𝑢𝑏𝑐𝑙𝑎𝑠𝑠(𝐶𝑖 ,𝐶𝑗))

CL is the class labels of sets Ci .. to Cn where n is the total

number of classes in a module, Ci ,Cj represents the ith and

jth class respectively and Ci represents the sets of all

subclasses of ith class. The subclass elements are added

onto the set Ci if and only if Cj is the subclass for Ci .

𝐶𝑂(𝐶𝐶𝐿)
= 𝐶𝑖=1

𝑛 [𝐶𝑖 ∪ 𝑎𝑙𝑙 𝑑𝑖𝑟𝑒𝑐𝑡 𝑎𝑛𝑑 𝑖𝑛𝑑𝑖𝑟𝑒𝑐𝑡 𝑠𝑢𝑏𝑐𝑙𝑎𝑠𝑠𝑒𝑠(𝐶𝑖)]

CO is the complexity of each class.

𝑆𝐶𝐹 =
 𝑎𝑙𝑙 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠 𝑖𝑛 𝐶𝑖

𝑛
𝑖=1

 (𝑛 − 𝑖)𝑛
𝑖=1

B. Illustration

An illustration is conducted to evaluate the performance of

the proposed SCF metric with an inheritance based java

program. The program is chosen in such a way that the

classes in the module are coupled directly and indirectly

between one another. This section illustrates the step by

step calibration of SCF in the following program.

Program 1:

class Shape

{

 public void getShapeValue()

 {
 System.out.println("getShape value Method");

 }

 public void setShapeValue()

 {

 System.out.println("setShape value Method");

 }

 public void calculateValue()

 {

 System.out.println("Calulate Method");

 }

 public void displayValue()

 {
 System.out.println("Display Method");

 }

}

class Circle extends Shape

{

 public void getCircleValue()

IJARCCE
ISSN (Online) 2278-1021

ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 5, Issue 3, March 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.53158 645

 {

 System.out.println("getCircleValue Method");

 }

 public void setCircleValue()
 {

 System.out.println("setCircleValue Method");

 }

 public void calculateValue()

 {

 System.out.println("Calulate Method");

 }

 public void displayValue()

 {

 System.out.println("Display Method");

 }
}

class RectAngle extends Shape

{

 public void getRectValue()

 {

 System.out.println("getRectValue Method");

 }

 public void setRectValue()

 {

 System.out.println("setRectValue Method");

 }
 public void calculateValue()

 {

 System.out.println("Calulate Method");

 }

 public void displayValue()

 {

 System.out.println("Display Method");

 }

}

class SemiCircle extends Circle

{

 public void getSemiValue()
 {

 System.out.println("getSemiValue Method");

 }

 public void setSemiValue()

 {

 System.out.println("setSemiValue Method");

 }

 public void calculateValue()

 {

 System.out.println("Calulate Method");

 }
 public void displayValue()

 {

 System.out.println("Display Method");

 }

}

class QCircle extends Circle

{

 public void getQValue()

 {

 System.out.println("getQValue Method");

 }

 public void setQValue()

 {

 System.out.println("setQValue Method");

 }
 public void calculateValue()

 {

 System.out.println("Calulate Method");

 }

 public void displayValue()

 {

 System.out.println("Display Method");

 }

}

class TriAngle extends RectAngle

{
 public void getTriValue()

 {

 System.out.println("getTriValue Method");

 }

 public void setTriValue()

 {

 System.out.println("setTriValue Method");

 }

 public void calculateValue()

 {

 System.out.println("Calulate Method");
 }

 public void displayValue()

 {

 System.out.println("Display Method");

 }

}

class Square extends RectAngle

{

 public void getSqureValue()

 {

 System.out.println("getSqureValue Method");

 }
 public void setSqureValue()

 {

 System.out.println("setSqureValue Method");

 }

 public void calculateValue()

 {

 System.out.println("Calulate Method");

 }

 public void displayValue()

 {

 System.out.println("Display Method");
 }

}

public class TotalShape

{

public static void main(String arg[])

{

Shape sh=new Shape();

sh.getShapeValue()

sh.setShapeValue()

sh.calculateValue();

sh.displayValue();

IJARCCE
ISSN (Online) 2278-1021

ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 5, Issue 3, March 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.53158 646

Circle cir=new Circle();

cri.getCircleValue()

cri.setCircleValue()

cri.calculateValue();
cri.displayValue();

RectAngle rect=new RectAngle ();

rect.getRectValue()
rect.setRectValue()

rect.calculateValue();

rect.displayValue();

SemiCircle semi=new SemiCircle();
semi.getSemiValue()

semi.setSemiValue()

semi.calculateValue();

semi.displayValue();

QCircle qc=new QCircle();

qc.getQValue()

qc.setQValue()

qc.calculateValue();

qc.displayValue();

TriAngle tri=new TriAngle ();

tri.getTriValue()

tri.setTriValue()

tri.calculateValue();

tri.displayValue();

Squre sq=new Squre()

sq.getSqureValue();

sq.setSqureValue();

sq.calculateValue();

sq.displayValue();
}

}

C. Subclass Coupling Factor Analysis

Total Number of classes in the program: 8

CShape= {Circle, Rectangle}

CCircle= {SemiCircle, QCircle}

CRectangle= {TriAngle,Square}

CSemiCircle= {NULL}

CQCircle= {NULL}
CTriAngle= {NULL}

CSqaure= {NULL}

As SCF calculates the direct and indirect coupling of

subclasses in the module exclude the main class for

calculating the coupling complexity. Hence, TotalShape

class in the program is excluded as it contains the main

function in the program. Now calculate the complexity of

each class by traversing through all subsequent subclasses

of the parent class. Hence the complexity of each class is

CShape= {Circle, Rectangle, SemiCircle, QCircle,

TriAngle,Square}
CCircle= {SemiCircle, QCircle}

CRectangle= {TriAngle,Square}

CSemiCircle= {NULL}

CQCircle= {NULL}

CTriAngle= {NULL}

CSqaure= {NULL}

Class AShape has four elements such as Circle, Rectangle,

SemiCircle, QCircle with which Circle and Rectangle

classes are the direct subclasses of Class Shape and

SemiCircle, QCircle are indirect subclasses of Class
Shape. Finally, the SCF for the program is calculated as

the sum of all elements of each class in the module divided

by the possible number coupling with the module.

SCF= (6+2+2)/8(8-1) =10/28=0.357

Coupling Factor:

CF= (1+1+1+1+1+1/8(8-1) =6/28=0.214

TABLE I: SUBCLASS COUPLING COMPLEXITY METRIC

VALUE FOR PROGRAM 1

Program# SCF CF

1 0.357 0.214

The pictorial representation of the comparison of coupling

factor and subclass coupling factor metrics is represented

in Fig.1. The metric value of SCF is higher than CF as the

complexity is higher. The metric enhances the complexity

with increased value.

Fig. 1. Comparison of Coupling Metrics

V. SCF EVALUATION

Many inventions have suggested that software metric

should satisfy certain properties for to evaluate their real

time usability in development environment. Basili and

Reiter[7] suggested that software metrics should be

sensitive to external observable differences in

development process, and should correspond to intuitive

notions about the characteristic differences between the

software artifacts being measured. Weyuker has also

proposed an authorized list of properties for software

metrics that could be evaluated on the existing software
metrics [9]. The notions of the Weyuker’s properties

include permutation, interaction, monotonicity, non-

researchers have recommended various properties

uniqueness and so on. The challenge in this section is to

evaluate the proposed SCF coupling metric against the

nine properties of Weyuker’s to prove its usefulness.

Though, several Weyuker’s properties are considered to be

most significant to classify the complexity of a measure.

Weyuker’s properties state that [1].

IJARCCE
ISSN (Online) 2278-1021

ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 5, Issue 3, March 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.53158 647

Property1

Non-coarseness:

(∃𝑅)(∃𝑆)(𝜇 𝑅 ≠ 𝜇 𝑆)
Not all class can have the same complexity. If there are ‘n’

numbers of modules in the software, SCF does not rank all

‘n’ modules as equally complex.

 Property 2

Granularity: Let ‘r’ be a non-negative number and there

could be only finite number of modules have the

complexity r. If the number of modules in large scale

system is finite, the complexity value of SCF is also finite.

Hence this property is satisfied.

Property 3

𝜇 𝑅 = 𝜇 𝑆
Non-uniqueness: This property implies that there may be

number of modules have the same complexity. SCF abides

this property, if the hierarchy of class in the modules are

similar, the complexity of the modules are also similar.

Property 4
 ∃𝑅 ∃𝑆 𝑅 ≡ 𝑆 𝑎𝑛𝑑 (𝜇 𝑅 ≠ 𝜇 𝑆)

Design details are important:

The property affirms that though if two classes have the

same functionality, they may differ in terms of details of
implementation. If the design implementation of two

modules is different, SCF produces different complexity

values for each module.

Property 5

Monotonicity:

For all modules R and S such that 𝜇 𝑅 ≤ 𝜇 𝑅 +
𝑆 𝑎𝑛𝑑 𝜇𝑆≤𝜇𝑅+𝑆.

Let the concatenation of two modules R and S be R+S.

Hence, this property states that complexity value of the
combined class may be larger than the complexity of the

individual classes R or S. SCF abides this property if there

is a possibility of inheritance between the modules R and

S while concatenation.

Property 6

Non-equivalence of interaction:

 ∃𝑅 ∃𝑆 ∃𝑇 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝜇 𝑅
= 𝜇 𝑆 𝑑𝑜𝑒𝑠 𝑛𝑜𝑡 𝑖𝑚𝑝𝑙𝑦 𝑡ℎ𝑎𝑡 𝜇 𝑅 + 𝑇
= 𝜇 𝑆 + 𝑇)

This property states that if a new module is added to the

two existing modules R and S which has the same module

complexity, if a new module T is added with both

modules, the module complexities of the two new

combined modules may be different or the interaction

between R and T may be different than the interaction

between S and T resulting in different complexity values

for R + T and S + T. SCF for sure yields different

complexity values for both modules R and S since T is

dependent on the fitness of inheritance with the existing

modules R and S.

Property 7

Permutation: There are program bodies I and J such that J

is formed by permuting the order of the statements of I and

(|I| = |J|). This property is not taken into the consideration

of object oriented metrics.

Property 8

Renaming:

If R is a renaming of S then 𝜇 𝑅 = 𝜇 𝑆
If module R is renamed as S then |R| = |S|. This property

requires that renaming a module should not affect the

complexity of the module. SCF does not have any impact

over the change of name of module, hence SCF satisfies

property 8.

Property 9

Interaction increases complexity:

 ∃𝑅 ∃𝑆 (𝜇 𝑅 + 𝜇 𝑆 < 𝜇 𝑅 + 𝑆)

The property says that the class complexity measure of a

new class combined from two classes may be greater than

the sum of two individual class complexity measures. This

property is not satisfied with SCF as the complexity of

combined modules could be possibly equal to the

individual complexity but not greater. Summary of the

SCF validation is described in Table 2.

TABLE II
EVALUATION OF SCF AGAINST WEYUKER’S PROPERTIES

S.No Property Result

1 Non-Coarseness Satisfied

2 Granularity Satisfied

3 Non-uniqueness Satisfied

4 Design details

matter

Satisfied

5 Monotonicity Satisfied

6 Non-equivalence

of interaction

Satisfied

7 Interaction among

statements

Not Applicable for

object oriented
Programming

8 No change on

renaming

Satisfied

9 Interaction

increases

complexity

Not Satisfied

VI. CONCLUSION

Subclass coupling is an important factor for assessing the

quality of software programming. A module that contains

more subclass coupling increases the complexity of the

software which should further be focused for

simplification. So far, in the existing literature there is no

specific metric available for computing the subclass

coupling. As an effort in this paper, we have proposed a

novel Subclass Coupling Factor (SCF) metric which

evaluates the complexity of a module in terms of subclass
coupling. The complexity values of SCF should range

from 0 to 1, where 0 represents low subclass coupling and

1 represents high subclass coupling. An high subclass

coupling is an alarm for the programmers as it implicitly

depicts the high complexity in program design. Low

subclass coupling is desirable as it reduces the code

complexity.

Moreover, a metric is considered as valid if it satisfies at

least seven of the weyuker’s properties. The proposed SCF

metric also satisfies seven properties of weyuker’s as it is

IJARCCE
ISSN (Online) 2278-1021

ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 5, Issue 3, March 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.53158 648

depicted in Table. 2 and proven as a valid object oriented

metric for evaluating the subclasses coupling involved in

any module.

REFERENCES

[1] Yadav, Maya, Jasvinder Pal Singh, and Pradeep Baniya.

Complexity Identification of Inheritance and Interface based on

Cohesion and Coupling Metrics to Increase Reusability.

International Journal of Computer Applications 64.8 (2013).

[2] Aloysius, A., and L. Arockiam. Coupling Complexity Metric: A

Cognitive Approach. International Journal of Information

Technology and Computer Science (IJITCS) 4.9 (2012): 29.

[3] Poshyvanyk, Denys, and Andrian Marcus. The conceptual coupling

metrics for object-oriented systems. Software Maintenance, 2006.

ICSM'06. 22nd IEEE International Conference on. IEEE, 2006.

[4] Misra, Sanjay, Ibrahim Akman, and Murat Koyuncu. An

inheritance complexity metric for object-oriented code: A cognitive

approach. Sadhana 36.3 (2011): 317-337.

[5] Shepperd, M. J., S. Chidamber, and Chris F. Kemerer. A metrics

suite for object oriented design. Software Engineering, IEEE

Transactions on 21.3 (1995): 263-265.

[6] Aggarwal, K. K., et al. Software Design Metrics for Object-

Oriented Software. Journal of Object Technology 6.1 (2007): 121-

138.

[7] Basili, Victor R., and Robert W. Reiter Jr. Evaluating automatable

measures of software development. Proceedings on Workshop on

Quantitative Software Models. 1979.

[8] Sharma, Aman Kumar, Arvind Kalia, and Hardeep Singh. Metrics

identification for measuring object oriented software quality.

International Journal of Soft Computing and Engineering 2.5

(2012): 255-258.

[9] Gandhi, Parul, and Pradeep Kumar Bhatia. Analytical Analysis of

Generic Reusability: Weyuker’s Properties.International Journal of

Computer Science 9.2 (2012).

[10] Chou, Chen-huei. Metrics in Evaluating Software Defects. DEF 18

(2013): 86-4.

[11] Gui, Gui, and Paul D. Scott. Measuring software component

reusability by coupling and cohesion metrics. Journal of computers

4.9 (2009): 797-805.

[12] https://en.wikipedia.org/wiki/Coupling_(computer_programming)

